1.考核知识范围
(1)数列极限的概念:数列极限的定义
(2)数列极限的性质:有界性 四则运算定理 夹逼定理
(3)函数极限的概念
函数在一点处极限的定义 左、右极限及其与极限的关系 x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限
(4)函数极限的定理:四则运算法则
(5)无穷小量和无穷大量
无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量与无穷大量的性质 两个无穷小量阶的比较
(6)两个重要极限
2.考核要求
(1)理解极限的概念(对极限定义中“ε-N”、“ε-δ”、“ε-M”的描述不作要求),能根据极限概念分析函数的变化趋势。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等阶)。会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
(五)导数的应用1.考核知识范围(1)洛必达(L’Hospital)法则(2)函数增减性的判定法(3)函数极值与极值点大值与小值(4)曲线的凹凸性、拐点2.考核要求(1)熟练掌握洛必达法则求“0/0”、“∞/∞”、“0?∞”、“∞-∞”、“1∞”、“00”和“∞0”型未定式的极限方法。(2)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单
(2)求导法则与导数的基本公式导数的四则运算导数的基本公式
(七)定积分1.考核知识范围(1)定积分的概念:定积分的定义及其几何意义(2)定积分的性质(3)定积分的计算变上限的定积分牛顿一莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法(4)定积分的应用:平面图形的面积2.考核要求(1)理解定积分的概念与几何意义。(2)掌握定积分的基本性质。(3)理解变上限的定积分是变上限的函数,掌握对变上限定积分求导数的方法。
考试目的与要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学,学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。本大纲对内容的要求由低到高,对概念
(一)函数1.考核知识范围(1)函数的概念:函数的定义函数的表示法分段函数(2)函数的简单性质:单调性奇偶性有界性周期性(3)函数的四则运算与复合运算(4)基本初等函数:幂函数指数函数对数函数三角函数(5)初等函数2.考核要求(1)理解函数的概念,会求函数的定义域、表达式及函数值。会求分段函数的定义域、函数值,并会作出简单的分段函数图像。(2)理解和掌握函数的单调性、
教材及主要参考书《微积分》万明主编
(二)极限1.考核知识范围(1)数列极限的概念:数列极限的定义(2)数列极限的性质:有界性四则运算定理夹逼定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限(4)函数极限的定理:唯一性定理夹逼定理四则运算法则(5)无穷小量和无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量与无穷
(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限
(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限
(二)极限1.考核知识范围(1)数列极限的概念:数列极限的定义(2)数列极限的性质:有界性四则运算定理夹逼定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限(4)函数极限的定理:四则运算法则(5)无穷小量和无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量与无穷大量的性质两个无穷小